separate optimization levels
ci/woodpecker/push/tools-wasm-pack-plugin Pipeline was successful Details
ci/woodpecker/push/wasm-o-x-rust Pipeline was successful Details

This commit is contained in:
Gleb Koval 2022-08-08 08:30:15 +00:00
parent 440218b513
commit 881e595f46
Signed by: cyclane
GPG Key ID: 15E168A8B332382C
3 changed files with 61 additions and 10 deletions

View File

@ -25,7 +25,7 @@ dependencies = [
[[package]]
name = "o-x-rust"
version = "0.0.7"
version = "0.0.8"
dependencies = [
"wasm-bindgen",
]

View File

@ -4,7 +4,7 @@ description = "Noughts and crosses WASM algorithms"
repository = "https://git.koval.net/cyclane/game-algorithms/src/branch/main/wasm/o-x-rust"
license = "GNU GPLv3"
readme = "README.md"
version = "0.0.7"
version = "0.0.8"
edition = "2021"
[lib]

View File

@ -35,20 +35,53 @@ pub fn get_turn(me: u8, other: u8, first: bool, empty: usize) -> u8 {
}
#[wasm_bindgen]
pub fn get_score(me: u8, other: u8, first: bool, board: &[u8]) -> f64 {
let (outcomes, score) = sub_get_score(me, other, first, board);
pub fn o0_get_score(me: u8, other: u8, first: bool, board: &[u8]) -> f64 {
let winner = find_winner(board);
if winner != 0 {
return if winner == me { 1.0 } else { -1.0 };
}
let empty = count_empty(board);
if empty == 0 {
return 0.0;
}
let mut score = 0.0;
for i in 0..9 {
if board[i] != 0 {
continue;
}
let copy = &mut [0u8; 9];
copy.copy_from_slice(board);
copy[i] = get_turn(me, other, first, empty);
score += o0_get_score(me, other, first, copy);
}
score
}
#[wasm_bindgen]
pub fn o1d_get_score(me: u8, other: u8, first: bool, board: &[u8]) -> f64 {
let (outcomes, score) = o1_sub_get_score(me, other, first, board, 2, 2, 1);
score as f64 / outcomes as f64
}
#[wasm_bindgen]
pub fn o1nd_get_score(me: u8, other: u8, first: bool, board: &[u8]) -> f64 {
let (outcomes, score) = o1_sub_get_score(me, other, first, board, 1, 1, 0);
score as f64 / outcomes as f64
}
// outcomes, winning outcomes
pub fn sub_get_score(me: u8, other: u8, first: bool, board: &[u8]) -> (i32, i32) {
// m: Total outcomes multiplier
// w: Win winning outcome score
// d: Draw winning outcome score
// (loose = 0)
pub fn o1_sub_get_score(me: u8, other: u8, first: bool, board: &[u8], m: i32, w: i32, d: i32) -> (i32, i32) {
let winner = find_winner(board);
if winner != 0 {
return if winner == me { (1, 1) } else { (1, 0) };
return if winner == me { (m, w) } else { (m, 0) };
}
let empty = count_empty(board);
if empty == 0 {
return (1, 0);
return (m, d);
}
let mut score = 0;
let mut outcomes = 0;
@ -59,15 +92,33 @@ pub fn sub_get_score(me: u8, other: u8, first: bool, board: &[u8]) -> (i32, i32)
let copy = &mut [0u8; 9];
copy.copy_from_slice(board);
copy[i] = get_turn(me, other, first, empty);
let (sub_outcomes, sub_score) = sub_get_score(me, other, first, copy);
let (sub_outcomes, sub_score) = o1_sub_get_score(me, other, first, copy, m, w, d);
outcomes += sub_outcomes;
score += sub_score;
}
(outcomes, score)
}
// Optimization levels: o0, o1d, o1nd, o2
// o0: minmax without optimizations
// o1d: minmax with ratio optimization including draws
// o1nd: minmax with ratio optimization excluding draws (draw = loose)
#[wasm_bindgen]
pub fn predict(me: u8, other: u8, first: bool, board: &[u8]) -> usize {
pub fn get_score(me: u8, other: u8, first: bool, board: &[u8], optimization_level: &str) -> f64 {
match optimization_level {
"o0" => o0_get_score(me, other, first, board),
"o1d" => o1d_get_score(me, other, first, board),
"o1nd" => o1nd_get_score(me, other, first, board),
_ => 0.0
}
}
// Optimization levels: o0, o1d, o1nd, o2
// o0: minmax without optimizations
// o1d: minmax with ratio optimization including draws
// o1nd: minmax with ratio optimization excluding draws (draw = loose)
#[wasm_bindgen]
pub fn predict(me: u8, other: u8, first: bool, board: &[u8], optimization_level: &str) -> usize {
let (mut max_p, mut max_s) = (0, f64::MIN);
let empty = count_empty(board);
if empty == 0 {
@ -80,7 +131,7 @@ pub fn predict(me: u8, other: u8, first: bool, board: &[u8]) -> usize {
let copy = &mut [0u8; 9];
copy.copy_from_slice(board);
copy[i] = get_turn(me, other, first, empty);
let score = get_score(me, other, first, copy);
let score = get_score(me, other, first, copy, optimization_level);
if score > max_s {
(max_p, max_s) = (i, score);
}