Files
pintos_22/specs/sysv-abi-update.html/ch4.intro.html
2024-10-01 23:37:39 +01:00

253 lines
7.6 KiB
HTML

<html>
<title>Chapter 4: Object Files</title>
<h1>Introduction</h1>
This chapter describes the
object file format, called ELF (Executable and Linking Format).
There are three main types of object files.
<ul>
<p><li>
A <i>relocatable file</i>
holds code and data suitable for linking
with other object files to create an executable
or a shared object file.
<p><li>
An <i>executable file</i>
holds a program suitable for execution;
the file specifies how
<code>exec</code>(BA_OS)
creates a program's process image.
<p><li>
A
<i>shared object file</i>
holds code and data suitable for linking
in two contexts.
First, the link editor [see <code>ld</code>(BA_OS)]
processes the shared object file with other relocatable
and shared object files to create another object file.
Second, the dynamic linker combines it with an executable file and other
shared objects to create a process image.
</ul>
<p>
Created by the assembler and link editor, object files are binary
representations of programs intended to be executed directly on
a processor. Programs that require other abstract machines, such
as shell scripts, are excluded.
</p>
<p>
After the introductory material, this chapter focuses on the file
format and how it pertains to building programs. Chapter 5 also
describes parts of the object file, concentrating on the information
necessary to execute a program.
</p>
<a name=file_format></a>
<h2>File Format</h2><p>
Object files participate in program linking (building a program)
and program execution (running a program). For convenience and
efficiency, the object file format provides parallel views of a file's
contents, reflecting the differing needs of those activities.
Figure 4-1 shows an object file's organization.
<hr>
<b>Figure 4-1: Object File Format</b>
<p>
<table>
<tr><td width="250">
<table border=1 cellspacing=0>
<caption align=bottom><b>Linking View</b></caption>
<tr><td align=center>ELF Header</td></tr>
<tr><td align=center>Program header table<br><i>optional</i></td></tr>
<tr><td align=center>Section 1</td></tr>
<tr><td align=center>...</td></tr>
<tr><td align=center>Section n</td></tr>
<tr><td align=center>...</td></tr>
<tr><td align=center>Section header table<br><i>required</i></td></tr>
</table>
</td>
<td>
<table border=1 cellspacing=0>
<caption align=bottom><b>Execution View</b></caption>
<tr><td align=center>ELF Header</td></tr>
<tr><td align=center>Program header table<br><i>required</i></td></tr>
<tr><td align=center>Segment 1<br></td></tr>
<tr><td align=center>Segment 2<br></td></tr>
<tr><td align=center>Segment 3<br></td></tr>
<tr><td align=center>...</td></tr>
<tr><td align=center>Section header table<br><i>optional</i></td></tr>
</table>
</td>
</tr>
</table>
<hr>
<p>
An <i>ELF header</i> resides at the beginning and
holds a ``road map''
describing the file's organization. <i>Sections</i> hold the bulk
of object file information for the linking view: instructions,
data, symbol table, relocation information, and so on.
Descriptions of special sections appear later in the chapter.
Chapter 5 discusses <i>segments</i> and the program execution
view of the file.
</p>
<p>
A <i>program header table</i> tells the system how to create a process image.
Files used to build a process image (execute a program)
must have a program header table; relocatable files do not need one.
A <i>section header table</i>
contains information describing the file's sections.
Every section has an entry in the table; each entry
gives information such as the section name, the
section size, and so on.
Files used during linking must have a section header table;
other object files may or may not have one.
<p><hr>
<img src=warning.gif alt="NOTE:">
Although the figure shows the program header table
immediately after the ELF header, and the section header table
following the sections, actual files may differ.
Moreover, sections and segments have no specified order.
Only the ELF header has a fixed position in the file.
<hr><p>
<a name=data_representation></a>
<h2>Data Representation</h2><p>
As described here, the object file
format
supports various processors with 8-bit bytes
and either 32-bit or 64-bit architectures.
Nevertheless, it is intended to be extensible to larger
(or smaller) architectures.
Object files therefore represent some control data
with a machine-independent format,
making it possible to identify object files and
interpret their contents in a common way.
Remaining data in an object file
use the encoding of the target processor, regardless of
the machine on which the file was created.
<hr>
<b>Figure 4-2: 32-Bit Data Types</b>
<p>
<table border=1 cellspacing=0>
<tr>
<th>Name</th>
<th>Size</th>
<th>Alignment</th>
<th>Purpose</th>
<tr>
<td><code>Elf32_Addr</code></td>
<TD align=center><code>4</code></td>
<TD align=center><code>4</code></td>
<td>Unsigned program address</td>
</tr>
<tr>
<td><code>Elf32_Off</code></td>
<TD align=center><code>4</code></td>
<TD align=center><code>4</code></td>
<td>Unsigned file offset</td>
</tr>
<tr>
<td><code>Elf32_Half</code></td>
<td align=center><code>2</code></td>
<td align=center><code>2</code></td>
<td>Unsigned medium integer</td>
</tr>
<tr>
<td><code>Elf32_Word</code></td>
<TD align=center><code>4</code></td>
<TD align=center><code>4</code></td>
<td>Unsigned integer</td>
</tr>
<tr>
<td><code>Elf32_Sword</code></td>
<TD align=center><code>4</code></td>
<TD align=center><code>4</code></td>
<td>Signed integer</td>
</tr>
<tr>
<td><code>unsigned char</code></td>
<TD align=center><code>1</code></td>
<TD align=center><code>1</code></td>
<td>Unsigned small integer</td>
</tr>
</table>
<p>
<b>64-Bit Data Types</b>
<p>
<table border cellspacing=0>
<tr>
<th>Name</th>
<th>Size</th>
<th>Alignment</th>
<th>Purpose</th>
<tr>
<td><code>Elf64_Addr</code></td>
<TD align=center><code>8</code></td>
<TD align=center><code>8</code></td>
<td>Unsigned program address</td>
</tr>
<tr>
<td><code>Elf64_Off</code></td>
<TD align=center><code>8</code></td>
<TD align=center><code>8</code></td>
<td>Unsigned file offset</td>
</tr>
<tr>
<td><code>Elf64_Half</code></td>
<TD align=center><code>2</code></td>
<TD align=center><code>2</code></td>
<td>Unsigned medium integer</td>
</tr>
<tr>
<td><code>Elf64_Word</code></td>
<td align=center><code>4</code></td>
<td align=center><code>4</code></td>
<td>Unsigned integer</td>
</tr>
<tr>
<td><code>Elf64_Sword</code></td>
<td align=center><code>4</code></td>
<td align=center><code>4</code></td>
<td>Signed integer</td>
</tr>
<tr>
<td><code>Elf64_Xword</code></td>
<td align=center><code>8</code></td>
<td align=center><code>8</code></td>
<td>Unsigned long integer</td>
</tr>
<tr>
<td><code>Elf64_Sxword</code></td>
<td align=center><code>8</code></td>
<td align=center><code>8</code></td>
<td>Signed long integer</td>
</tr>
<tr>
<td><code>unsigned char</code></td>
<td align=center><code>1</code></td>
<td align=center><code>1</code></td>
<td>Unsigned small integer</td>
</tr>
</table>
<p>
<hr>
All data structures that the object file format
defines follow the ``natural'' size and alignment guidelines
for the relevant class.
If necessary, data structures contain explicit padding to
ensure 8-byte alignment for 8-byte objects,
4-byte alignment for 4-byte objects, to force
structure sizes to a multiple of 4 or 8, and so forth.
Data also have suitable alignment from the beginning of the file.
Thus, for example, a structure containing an
<code>Elf32_Addr</code>
member will be aligned on a 4-byte boundary within the file.
<p>
For portability reasons, ELF uses no bit-fields.
<hr>
<a href=contents.html><img src=contents.gif alt="Contents">
<a href=ch4.eheader.html><img src=next.gif alt="Next"></a>
<hr>
<i>
<small>
&#169; 1997, 1998, 1999, 2000, 2001 The Santa Cruz Operation, Inc. All rights reserved.
</small>
</i>
</html>