Compare commits

..

1 Commits

Author SHA1 Message Date
sBubshait
5265fed288 Refactor stack growth to be helper functions in exception for easier merging 2024-12-05 00:27:40 +00:00
16 changed files with 82 additions and 378 deletions

View File

@@ -37,4 +37,4 @@ test_vm:
extends: .pintos_tests
variables:
DIR: vm
IGNORE: (tests/vm/page-parallel|tests/vm/page-merge-seq|tests/vm/page-merge-par|tests/vm/page-merge-stk|tests/vm/page-merge-mm|tests/vm/mmap-read|tests/vm/mmap-close|tests/vm/mmap-overlap|tests/vm/mmap-twice|tests/vm/mmap-write|tests/vm/mmap-exit|tests/vm/mmap-shuffle|tests/vm/mmap-clean|tests/vm/mmap-inherit|tests/vm/mmap-misalign|tests/vm/mmap-null|tests/vm/mmap-over-code|tests/vm/mmap-over-data|tests/vm/mmap-over-stk|tests/vm/mmap-remove)
IGNORE: (tests/vm/pt-grow-stack|tests/vm/pt-grow-pusha|tests/vm/pt-big-stk-obj|tests/vm/pt-overflowstk|tests/vm/pt-write-code2|tests/vm/pt-grow-stk-sc|tests/vm/page-linear|tests/vm/page-parallel|tests/vm/page-merge-seq|tests/vm/page-merge-par|tests/vm/page-merge-stk|tests/vm/page-merge-mm|tests/vm/mmap-read|tests/vm/mmap-close|tests/vm/mmap-overlap|tests/vm/mmap-twice|tests/vm/mmap-write|tests/vm/mmap-exit|tests/vm/mmap-shuffle|tests/vm/mmap-clean|tests/vm/mmap-inherit|tests/vm/mmap-misalign|tests/vm/mmap-null|tests/vm/mmap-over-code|tests/vm/mmap-over-data|tests/vm/mmap-over-stk|tests/vm/mmap-remove)

View File

@@ -65,7 +65,6 @@ userprog_SRC += userprog/tss.c # TSS management.
vm_SRC += vm/frame.c # Frame table manager.
vm_SRC += vm/page.c # Page table manager.
vm_SRC += devices/swap.c # Swap block manager.
vm_SRC += vm/stackgrowth.c # Stack growth functions.
#vm_SRC = vm/file.c # Some other file.
# Filesystem code.

View File

@@ -15,7 +15,6 @@
#include "threads/switch.h"
#include "threads/synch.h"
#include "threads/vaddr.h"
#include "vm/page.h"
#ifdef USERPROG
#include "userprog/process.h"
#include "userprog/syscall.h"
@@ -263,14 +262,9 @@ thread_create (const char *name, int priority,
/* Initialize the thread's file descriptor table. */
t->fd_counter = MINIMUM_USER_FD;
bool success = hash_init (&t->open_files, fd_hash, fd_less, NULL);
success = success && hash_init (&t->child_results, process_result_hash,
process_result_less, t);
#ifdef VM
success = success && hash_init (&t->pages, page_hash, page_less, NULL);
#endif
if (!success)
if (!hash_init (&t->open_files, fd_hash, fd_less, NULL)
|| !hash_init (&t->child_results, process_result_hash,
process_result_less, t))
{
palloc_free_page (t);
free (t->result);

View File

@@ -143,10 +143,6 @@ struct thread
struct hash open_files; /* Hash Table of FD -> Struct File. */
#endif
#ifdef VM
struct hash pages; /* Table of open user pages. */
#endif
void *curr_esp;
/* Owned by thread.c. */

View File

@@ -1,7 +1,7 @@
# -*- makefile -*-
kernel.bin: DEFINES = -DUSERPROG -DFILESYS
KERNEL_SUBDIRS = threads devices lib lib/kernel userprog filesys
kernel.bin: DEFINES = -DUSERPROG -DFILESYS -DVM
KERNEL_SUBDIRS = threads devices lib lib/kernel userprog filesys vm
TEST_SUBDIRS = tests/userprog tests/userprog/no-vm tests/filesys/base
GRADING_FILE = $(SRCDIR)/tests/userprog/Grading
SIMULATOR = --qemu

View File

@@ -1,25 +1,25 @@
#include "userprog/exception.h"
#include <inttypes.h>
#include <stdio.h>
#include "stdbool.h"
#include "userprog/gdt.h"
#include "threads/interrupt.h"
#include "threads/thread.h"
#ifdef VM
#include "vm/stackgrowth.h"
#include "vm/frame.h"
#include "vm/page.h"
#include "devices/swap.h"
#include "threads/vaddr.h"
#include "userprog/pagedir.h"
#endif
#include "userprog/process.h"
#include "threads/interrupt.h"
#include "threads/palloc.h"
#include "threads/thread.h"
#include "threads/vaddr.h"
#define MAX_STACK_SIZE (8 * 1024 * 1024) // 8MB
#define MAX_STACK_OFFSET 32 // 32 bytes offset below stack pointer (ESP)
/* Number of page faults processed. */
static long long page_fault_cnt;
static void kill (struct intr_frame *);
static void page_fault (struct intr_frame *);
bool try_fetch_page (void *upage, bool write);
static bool is_valid_stack_access (const void *fault_addr, const void *esp);
static bool grow_stack (void *upage);
/* Registers handlers for interrupts that can be caused by user
programs.
@@ -155,49 +155,27 @@ page_fault (struct intr_frame *f)
write = (f->error_code & PF_W) != 0;
user = (f->error_code & PF_U) != 0;
#ifdef VM
if (!user || !not_present)
{
f->eip = (void *)f->eax;
f->eax = 0xffffffff;
return;
}
/* If the fault address is in a user page that is not present, then it might
be just that the stack needs to grow. So we attempt to grow the stack. */
void *upage = pg_round_down (fault_addr);
if (not_present && is_user_vaddr(upage))
if (not_present && is_user_vaddr (upage) && upage != NULL)
{
struct thread *t = thread_current ();
void *esp = user ? f->esp : t->curr_esp;
/* Check if the non-present user page is in the swap partition.
If so, swap it back into main memory, updating the PTE for
the faulted virtual address to point to the newly allocated
frame. */
if (page_in_swap (t, fault_addr))
if (is_valid_stack_access (fault_addr, f->esp))
{
size_t swap_slot = page_get_swap (t, fault_addr);
void *kpage = frame_alloc (0, upage, t);
swap_in (kpage, swap_slot);
bool writeable = pagedir_is_writable (t->pagedir, upage);
if (pagedir_set_page (t->pagedir, upage, kpage, writeable)) return;
if (grow_stack (upage))
return;
}
/* Handle user page faults that need to be resolved by dynamic
stack growth by checking if this is such a fault and responding
accordingly. */
if (handle_stack_fault (fault_addr, esp)) return;
/* Handle user page faults that need to be resolved by lazy loading
of executable files by checking if they contain entries in the
SPT hash map and responding accordingly. */
if (try_fetch_page (upage, write))
return;
/* TODO: Check SPT for the page. */
}
/* Allows for page faults within a kernel context to communicate with
user pages for sending error codes. */
if (!user)
{
f->eip = (void *)f->eax;
f->eax = 0xffffffff;
return;
}
#endif
/* To implement virtual memory, delete the rest of the function
body, and replace it with code that brings in the page to
which fault_addr refers. */
@@ -209,35 +187,50 @@ page_fault (struct intr_frame *f)
kill (f);
}
#ifdef VM
bool
try_fetch_page (void *upage, bool write)
/* Validates whether the fault address is a valid stack access. Access is a
valid stack access under the following two conditions:
1. The fault address must be within MAX_STACK_OFFSET (32) bytes below
the current stack pointer. (Accounts for both PUSH and PUSHA instructions)
2. Growing this stack to this address does not cause it to exceed the
MAX_STACK_SIZE (8MB) limit.
Returns true if both conditions are met, false otherwise.
Pre: fault_addr is a valid user virtual address (so also not NULL). */
static bool
is_valid_stack_access (const void *fault_addr, const void *esp)
{
/* Check if the page is in the supplemental page table. That is, it is a page
that is expected to be in memory. */
struct page_entry *page = page_get (upage);
if (page == NULL)
return false;
uint32_t new_stack_size = PHYS_BASE - pg_round_down (fault_addr);
/* An attempt to write to a non-writeable should fail. */
if (write && !page->writable)
return false;
uint32_t *lowest_valid_push_addr = (uint32_t *)esp - MAX_STACK_OFFSET;
bool is_within_push_range = (uint32_t *)fault_addr >= lowest_valid_push_addr;
/* Load the page into memory based on the type of data it is expecting. */
bool success = false;
switch (page->type) {
case PAGE_EXECUTABLE:
success = page_load (page, page->writable);
break;
default:
return false;
}
if (success && page->writable &&
!pagedir_is_writable(thread_current()->pagedir, upage))
pagedir_set_writable(thread_current()->pagedir, upage, true);
return success;
return is_within_push_range && new_stack_size <= MAX_STACK_SIZE;
}
#endif
/* Attempts to grow the stack by allocating and mapping a new page.
This involves:
1. Allocating a zeroed page from the user pool
2. Installing it into the page table with write permissions
Returns true if the stack was successfully grown, false if either
allocation or installation fails.
Pre: upage is a valid page-aligned address (so also not NULL). */
static bool
grow_stack (void *upage)
{
/* Allocate new page for stack */
void *kpage = palloc_get_page (PAL_USER | PAL_ZERO);
if (kpage == NULL)
return false;
/* Install the page into user page table */
if (!install_page (upage, kpage, true))
{
palloc_free_page (kpage);
return false;
}
return true;
}

View File

@@ -1,8 +1,6 @@
#ifndef USERPROG_EXCEPTION_H
#define USERPROG_EXCEPTION_H
#include <stdbool.h>
/* Page fault error code bits that describe the cause of the exception. */
#define PF_P 0x1 /* 0: not-present page. 1: access rights violation. */
#define PF_W 0x2 /* 0: read, 1: write. */
@@ -10,7 +8,5 @@
void exception_init (void);
void exception_print_stats (void);
bool
try_fetch_page (void *upage, bool write);
#endif /* userprog/exception.h */

View File

@@ -7,6 +7,7 @@
#include "threads/palloc.h"
static uint32_t *active_pd (void);
static void invalidate_pagedir (uint32_t *);
/* Creates a new page directory that has mappings for kernel
virtual addresses, but none for user virtual addresses.
@@ -52,7 +53,7 @@ pagedir_destroy (uint32_t *pd)
on CREATE. If CREATE is true, then a new page table is
created and a pointer into it is returned. Otherwise, a null
pointer is returned. */
uint32_t *
static uint32_t *
lookup_page (uint32_t *pd, const void *vaddr, bool create)
{
uint32_t *pt, *pde;
@@ -277,7 +278,7 @@ active_pd (void)
This function invalidates the TLB if PD is the active page
directory. (If PD is not active then its entries are not in
the TLB, so there is no need to invalidate anything.) */
void
static void
invalidate_pagedir (uint32_t *pd)
{
if (active_pd () == pd)

View File

@@ -6,7 +6,6 @@
uint32_t *pagedir_create (void);
void pagedir_destroy (uint32_t *pd);
uint32_t *lookup_page (uint32_t *pd, const void *vaddr, bool create);
bool pagedir_set_page (uint32_t *pd, void *upage, void *kpage, bool rw);
void *pagedir_get_page (uint32_t *pd, const void *upage);
void pagedir_clear_page (uint32_t *pd, void *upage);
@@ -17,6 +16,5 @@ void pagedir_set_accessed (uint32_t *pd, const void *upage, bool accessed);
bool pagedir_is_writable (uint32_t *pd, const void *upage);
void pagedir_set_writable (uint32_t *pd, const void *upage, bool writable);
void pagedir_activate (uint32_t *pd);
void invalidate_pagedir (uint32_t *pd);
#endif /* userprog/pagedir.h */

View File

@@ -24,7 +24,6 @@
#include "threads/vaddr.h"
#include "threads/synch.h"
#include "devices/timer.h"
#include "vm/page.h"
#ifdef VM
#include "vm/frame.h"
#endif
@@ -365,9 +364,6 @@ process_exit (void)
/* Clean up all open files */
hash_destroy (&cur->open_files, fd_cleanup);
#ifdef VM
hash_destroy (&cur->pages, page_cleanup);
#endif
/* Close the executable file, implicitly allowing it to be written to. */
if (cur->exec_file != NULL)
@@ -625,9 +621,7 @@ load (const char *file_name, void (**eip) (void), void **esp)
done:
/* We arrive here whether the load is successful or not. */
#ifndef VM
file_close (file);
#endif
lock_release (&filesys_lock);
return success;
}
@@ -695,34 +689,12 @@ validate_segment (const struct Elf32_Phdr *phdr, struct file *file)
or disk read error occurs. */
static bool
load_segment (struct file *file, off_t ofs, uint8_t *upage,
uint32_t read_bytes, uint32_t zero_bytes, bool writable)
uint32_t read_bytes, uint32_t zero_bytes, bool writable)
{
ASSERT ((read_bytes + zero_bytes) % PGSIZE == 0);
ASSERT (pg_ofs (upage) == 0);
ASSERT (ofs % PGSIZE == 0);
#ifdef VM
while (read_bytes > 0 || zero_bytes > 0)
{
/* Calculate how to fill this page.
We will read PAGE_READ_BYTES bytes from FILE
and zero the final PAGE_ZERO_BYTES bytes. */
size_t page_read_bytes = read_bytes < PGSIZE ? read_bytes : PGSIZE;
size_t page_zero_bytes = PGSIZE - page_read_bytes;
/* Add the page metadata to the SPT to be lazy loaded later on */
if (page_insert (file, ofs, upage, page_read_bytes, page_zero_bytes,
writable, PAGE_EXECUTABLE) == NULL)
return false;
/* Advance. */
read_bytes -= page_read_bytes;
zero_bytes -= page_zero_bytes;
ofs += PGSIZE;
upage += PGSIZE;
}
return true;
#else
file_seek (file, ofs);
while (read_bytes > 0 || zero_bytes > 0)
{
@@ -772,7 +744,6 @@ load_segment (struct file *file, off_t ofs, uint8_t *upage,
upage += PGSIZE;
}
return true;
#endif
}
/* Create a minimal stack by mapping a zeroed page at the top of
@@ -811,7 +782,6 @@ get_usr_kpage (enum palloc_flags flags, void *upage)
return NULL;
else
page = frame_alloc (flags, upage, t);
pagedir_set_accessed (t->pagedir, upage, true);
#else
page = palloc_get_page (flags | PAL_USER);
#endif

View File

@@ -536,4 +536,4 @@ put_user (uint8_t *udst, uint8_t byte)
: "=&a"(error_code), "=m"(*udst)
: "q"(byte));
return error_code != -1;
}
}

View File

@@ -93,13 +93,6 @@ frame_alloc (enum palloc_flags flags, void *upage, struct thread *owner)
ASSERT (victim != NULL); /* get_victim () should never return null. */
/* 2. Swap out victim into disk. */
/* Mark page as 'not present' and flag the page directory as having
been modified *before* eviction begins to prevent the owner of the
victim page from accessing/modifying it mid-eviction. */
pagedir_clear_page (victim->owner->pagedir, victim->upage);
// TODO: Lock PTE of victim page for victim process.
size_t swap_slot = swap_out (victim->frame);
page_set_swap (victim->owner, victim->upage, swap_slot);
@@ -260,3 +253,4 @@ lru_prev (struct list_elem *e)
return list_prev (e);
}

View File

@@ -1,145 +1,12 @@
#include "page.h"
#include <string.h>
#include <stdio.h>
#include "filesys/file.h"
#include "threads/pte.h"
#include "threads/malloc.h"
#include "threads/palloc.h"
#include "userprog/process.h"
#include "userprog/pagedir.h"
#include "vm/frame.h"
#define SWAP_FLAG_BIT 9
#define ADDR_START_BIT 12
/* Hashing function needed for the SPT table. Returns a hash for an entry,
based on its upage. */
unsigned
page_hash (const struct hash_elem *e, UNUSED void *aux)
{
struct page_entry *page = hash_entry (e, struct page_entry, elem);
return hash_ptr (page->upage);
}
/* Comparator function for the SPT table. Compares two entries based on their
upages. */
bool
page_less (const struct hash_elem *a_, const struct hash_elem *b_,
void *aux UNUSED)
{
const struct page_entry *a = hash_entry (a_, struct page_entry, elem);
const struct page_entry *b = hash_entry (b_, struct page_entry, elem);
return a->upage < b->upage;
}
/* Allocate and insert a new page entry into the thread's page table. */
struct page_entry *
page_insert (struct file *file, off_t ofs, void *upage, uint32_t read_bytes,
uint32_t zero_bytes, bool writable, enum page_type type)
{
struct page_entry *page = malloc(sizeof (struct page_entry));
if (page == NULL)
return NULL;
page->file = file;
page->offset = ofs;
page->upage = upage;
page->read_bytes = read_bytes;
page->zero_bytes = zero_bytes;
page->writable = writable;
page->type = type;
hash_insert (&thread_current ()->pages, &page->elem);
return page;
}
/* Gets a page_entry from the starting address of the page. Returns NULL if no
such page_entry exists in the hash map.*/
struct page_entry *
page_get (void *upage)
{
struct page_entry fake_page_entry;
fake_page_entry.upage = upage;
struct hash_elem *e
= hash_find (&thread_current ()->pages, &fake_page_entry.elem);
if (e == NULL)
return NULL;
return hash_entry (e, struct page_entry, elem);
}
bool
page_load (struct page_entry *page, bool writable)
{
/* Allocate a frame for the page. If a frame allocation fails, then
frame_alloc should try to evict a page. If it is still NULL, the OS
panics as this should not happen if eviction is working correctly. */
struct thread *t = thread_current ();
void *frame = frame_alloc (0, page->upage, t);
pagedir_set_accessed (t->pagedir, page->upage, true);
if (frame == NULL)
PANIC ("Could not allocate a frame to load page into memory.");
/* Map the page to the frame. */
if (!install_page (page->upage, frame, writable))
{
frame_free (frame);
return false;
}
/* Move the file pointer to the correct location in the file. Then, read the
data from the file into the frame. Checks that we were able to read the
expected number of bytes. */
file_seek (page->file, page->offset);
if (file_read (page->file, frame, page->read_bytes) != (int) page->read_bytes)
{
frame_free (frame);
return false;
}
/* Zero out the remaining bytes in the frame. */
memset (frame + page->read_bytes, 0, page->zero_bytes);
/* Mark the page as loaded successfully. */
return true;
}
/* Function to clean up a page_entry. Given the elem of that page_entry, frees
the page_entry itself. */
void
page_cleanup (struct hash_elem *e, void *aux UNUSED)
{
free (hash_entry (e, struct page_entry, elem));
}
/* Updates the 'owner' thread's page table entry for virtual address 'upage'
to flag the page as being stored in swap, and stores the specified swap slot
value in the entry at the address bits for later retrieval from disk. */
to have a present bit of 0 and stores the specified swap slot value in the
entry for later retrieval from disk. */
void
page_set_swap (struct thread *owner, void *upage, size_t swap_slot)
{
uint32_t *pte = lookup_page (owner->pagedir, upage, false);
/* Store the provided swap slot in the address bits of the page table
entry, truncating excess bits. */
*pte |= (1 << SWAP_FLAG_BIT);
uint32_t swap_slot_bits = (swap_slot << ADDR_START_BIT) & PTE_ADDR;
*pte = (*pte & PTE_FLAGS) | swap_slot_bits;
invalidate_pagedir (owner->pagedir);
}
/* Returns true iff the page with user address 'upage' owned by 'owner'
is flagged to be in the swap disk via the owner's page table. */
bool
page_in_swap (struct thread *owner, void *upage)
{
uint32_t *pte = lookup_page (owner->pagedir, upage, false);
return pte != NULL &&
(*pte & (1 << SWAP_FLAG_BIT)) != 0;
}
/* Given that the page with user address 'upage' owned by 'owner' is flagged
@@ -148,11 +15,6 @@ page_in_swap (struct thread *owner, void *upage)
size_t
page_get_swap (struct thread *owner, void *upage)
{
uint32_t *pte = lookup_page (owner->pagedir, upage, false);
ASSERT (pte != NULL);
ASSERT ((*pte & PTE_P) == 0);
/* Masks the address bits and returns truncated value. */
return ((*pte & PTE_ADDR) >> ADDR_START_BIT);
}

View File

@@ -2,38 +2,8 @@
#define VM_PAGE_H
#include "threads/thread.h"
#include "filesys/off_t.h"
enum page_type {
PAGE_EXECUTABLE,
PAGE_EMPTY
};
struct page_entry {
enum page_type type; /* Type of Data that should go into the page */
void *upage; /* Start Address of the User Page (Key of hash table). */
/* File Data */
struct file *file; /* Pointer to the file for executables. */
off_t offset; /* Offset of the page content within the file. */
uint32_t read_bytes; /* Number of bytes to read within the page. */
uint32_t zero_bytes; /* Number of bytes to zero within the page. */
bool writable; /* Flag for whether this page is writable or not. */
struct hash_elem elem; /* An elem for the hash table. */
};
unsigned page_hash (const struct hash_elem *e, void *aux);
bool page_less (const struct hash_elem *a_, const struct hash_elem *b_,
void *aux);
struct page_entry *page_insert (struct file *file, off_t ofs, void *upage,
uint32_t read_bytes, uint32_t zero_bytes,
bool writable, enum page_type type);
struct page_entry *page_get (void *upage);
bool page_load (struct page_entry *page, bool writable);
void page_cleanup (struct hash_elem *e, void *aux);
void page_set_swap (struct thread *, void *, size_t);
bool page_in_swap (struct thread *, void *);
size_t page_get_swap (struct thread *, void *);
#endif /* vm/frame.h */

View File

@@ -1,59 +0,0 @@
#include <stdio.h>
#include "stackgrowth.h"
#include "frame.h"
#include "threads/palloc.h"
#include "threads/thread.h"
#include "threads/vaddr.h"
#include "userprog/pagedir.h"
#define MAX_STACK_ACCESS_DIST 32
static bool is_stack_fault (const void *addr, const void *esp);
static bool grow_stack (const void *addr);
/* Determine whether a particular page fault occured due to a stack
access below the stack pointer that should induce stack growth, and
if so grow the stack by a single page (capped at MAX_STACK_SIZE). */
bool
handle_stack_fault (const void *ptr, const void *esp)
{
return is_stack_fault (ptr, esp) && grow_stack (ptr);
}
/* Determines whether a particular page fault appears to be caused by
a stack access that should induce dynamic stack growth. Stack size
is capped at MAX_STACK_SIZE. */
static bool
is_stack_fault (const void *addr, const void *esp)
{
return ((uint32_t*)addr >= ((uint32_t*)esp - MAX_STACK_ACCESS_DIST) &&
((PHYS_BASE - pg_round_down (addr)) <= MAX_STACK_SIZE));
}
/* Grows the stack of the process running inside the current thread by a single
page given a user virtual address inside of the page wherein the new section
of the stack should be allocated. */
static bool
grow_stack (const void *addr)
{
struct thread *t = thread_current ();
void *last_page = pg_round_down (addr);
/* This function should only be called when dealing with a faulting stack
access that induces stack growth, so the provided address shouldn't be
present in a page within the current thread's page directory. */
ASSERT (pagedir_get_page (t->pagedir, last_page) == NULL);
uint8_t *new_page = frame_alloc (PAL_ZERO, last_page, t);
if (new_page == NULL)
return false;
if (!pagedir_set_page (t->pagedir, last_page, new_page, true))
{
frame_free (new_page);
return false;
}
return true;
}

View File

@@ -1,10 +0,0 @@
#ifndef VM_GROWSTACK_H
#define VM_GROWSTACK_H
#include <stdio.h>
#define MAX_STACK_SIZE 8388608 // (8MB)
bool handle_stack_fault (const void *ptr, const void *esp);
#endif /* vm/frame.h */