Compare commits

...

42 Commits

Author SHA1 Message Date
EDiasAlberto
ac31fb1e1e feat: set accessed bit to allocated frames in page_load and get_usr_kpage 2024-12-05 01:41:23 +00:00
Demetriades, Themis
f06c91cf0d ci: include linear page tests in VM test pipeline 2024-12-05 00:29:49 +00:00
Themis Demetriades
19d5b02341 fix: remove use of USERPROG compiler flag specific code when the flag is disabled 2024-12-04 23:48:51 +00:00
Themis Demetriades
0288e13206 fix: don't discriminate between user and kernel page fault contexts for stack growth, lazy loading, and swapping 2024-12-04 23:46:31 +00:00
Themis Demetriades
60faf995ea fix: lazy load executable files of user processes even when accessed in a kernel context 2024-12-04 22:21:31 +00:00
Themis Demetriades
723055f485 fix: only use lazy loading if VM flag is enabled 2024-12-04 21:33:21 +00:00
Themis Demetriades
1e236a5c47 Merge branch 'vm/lazy-loading' into vm/page-swap-synch 2024-12-04 19:11:37 +00:00
Themis Demetriades
4bf6914cfa feat: incorporate lazy-loading data & helpers into supplemental page table 2024-12-04 16:45:36 +00:00
Themis Demetriades
fb73d694bf fix: frame allocation now invalidates the victim process page directory, not the caller's 2024-12-04 16:41:13 +00:00
Themis Demetriades
1b73e415d7 fix: invalidate PTEs of evicted pages before eviction occurs to prevent modificationof pages mid-eviction 2024-12-04 15:02:49 +00:00
Themis Demetriades
47a7dfae04 refactor: add comments describing each type of page fault dealt by the page fault handler 2024-12-03 21:47:59 +00:00
EDiasAlberto
9a3c8a1c38 fix: grow stack upon page fault in kernel context to support syscall stack growth 2024-12-03 20:56:10 +00:00
Themis Demetriades
08eafcf7ef feat: implement page swapping 2024-12-03 16:53:47 +00:00
Themis Demetriades
df7d847978 fix: remove stack fault checks for page faults outside user non-present addresses 2024-12-02 21:07:17 +00:00
Demetriades, Themis
fbcd3c9f19 ci: include dynamic stack growth tests in VM test pipeline 2024-12-02 20:57:05 +00:00
Themis Demetriades
6190d1bee6 fix: disable dynamic stack growth when VM flag is disabled 2024-12-02 20:44:54 +00:00
Themis Demetriades
6adf2e743b refactor: dynamic stack growth functions to follow code style 2024-12-02 19:50:40 +00:00
Themis Demetriades
05a48cf9c6 refactor: page fault exception handler follows code style 2024-12-01 23:36:55 +00:00
Themis Demetriades
bb16abdc0d refactor: supplemental page table helper functions follow code style 2024-12-01 23:30:50 +00:00
Demetriades, Themis
8e278b349a Merge branch 'page-swap-helpers' into 'virtual-memory'
Implement helper functions for managing the supplemental page table

See merge request lab2425_autumn/pintos_22!55
2024-12-01 21:47:30 +00:00
Demetriades, Themis
9d35beb2e4 Merge branch 'virtual-memory' into 'page-swap-helpers'
# Conflicts:
#   src/vm/frame.c
#   src/vm/page.c
2024-12-01 21:44:17 +00:00
Themis Demetriades
7ce512305e fix: remove DVM flag when compiling outside of vm directory 2024-12-01 00:41:09 +00:00
Demetriades, Themis
775b73a3e9 Merge branch 'ethan-stack-growth' into 'virtual-memory'
Implement dynamic stack growth

See merge request lab2425_autumn/pintos_22!54
2024-11-30 23:21:33 +00:00
Demetriades, Themis
d8edc6d3fe Merge branch 'virtual-memory' into 'ethan-stack-growth'
# Conflicts:
#   src/Makefile.build
2024-11-30 23:21:16 +00:00
Demetriades, Themis
5682974f9d Merge branch 'vm/supplemental-page-table' into 'master'
Implement frame table & page eviction algorithm

See merge request lab2425_autumn/pintos_22!53
2024-11-30 23:01:04 +00:00
Themis Demetriades
6f85d7642d feat: implement clock (second-chance) page eviction algorithm 2024-11-30 22:40:13 +00:00
EDiasAlberto
94adc11f03 Feat: implement page_get_swap and page_set_swap functions 2024-11-30 03:21:34 +00:00
EDiasAlberto
40c553d68b Merge stack growth functions 2024-11-30 01:54:28 +00:00
EDiasAlberto
13de832586 Refactor stack growth code to remove messy conditions 2024-11-29 23:52:05 +00:00
EDiasAlberto
5c661c2e24 Feat: pointer validation checks string across multiple pages and handle kernel page faults 2024-11-29 23:49:49 +00:00
EDiasAlberto
5f40d83e66 Implement MMU-based user memory validation 2024-11-29 23:03:31 +00:00
Themis Demetriades
149bb42889 feat: implement clock (second-chance) page eviction algorithm 2024-11-29 19:30:47 +00:00
EDiasAlberto
4f84a83611 Refactor: abstract new page allocation to one general function and make helper functions static 2024-11-27 19:41:22 +00:00
EDiasAlberto
c74a8c55aa Implement stack growth for system calls and add stack pointer tracking to thread 2024-11-27 19:21:43 +00:00
EDiasAlberto
c670c29e47 update stack growth header to fit virtual memory naming format 2024-11-27 18:57:20 +00:00
EDiasAlberto
af7f2ba873 Fix: Magic number in stackgrowth.c 2024-11-26 04:54:00 +00:00
EDiasAlberto
3ef5264b6e feat: allow stack to grow for process up to 8MB in size 2024-11-26 04:43:25 +00:00
59e7a64f8e Only check user pages rather than all bytes in-between, for known-size pointers 2024-11-12 15:48:22 +00:00
cf4bf90cbb Implement user pointer checking for C strings 2024-11-12 15:34:45 +00:00
9a6abab95e Check access to user memory using page fault method (via get_user and put_user). 2024-11-12 15:00:16 +00:00
44f6a85163 Add get_user and put_user provided by spec. 2024-11-12 14:50:53 +00:00
83e044cf68 Let kernel handle its own page faults 2024-11-12 14:50:53 +00:00
17 changed files with 683 additions and 120 deletions

View File

@@ -37,4 +37,4 @@ test_vm:
extends: .pintos_tests
variables:
DIR: vm
IGNORE: (tests/vm/pt-grow-stack|tests/vm/pt-grow-pusha|tests/vm/pt-big-stk-obj|tests/vm/pt-overflowstk|tests/vm/pt-write-code2|tests/vm/pt-grow-stk-sc|tests/vm/page-linear|tests/vm/page-parallel|tests/vm/page-merge-seq|tests/vm/page-merge-par|tests/vm/page-merge-stk|tests/vm/page-merge-mm|tests/vm/mmap-read|tests/vm/mmap-close|tests/vm/mmap-overlap|tests/vm/mmap-twice|tests/vm/mmap-write|tests/vm/mmap-exit|tests/vm/mmap-shuffle|tests/vm/mmap-clean|tests/vm/mmap-inherit|tests/vm/mmap-misalign|tests/vm/mmap-null|tests/vm/mmap-over-code|tests/vm/mmap-over-data|tests/vm/mmap-over-stk|tests/vm/mmap-remove)
IGNORE: (tests/vm/page-parallel|tests/vm/page-merge-seq|tests/vm/page-merge-par|tests/vm/page-merge-stk|tests/vm/page-merge-mm|tests/vm/mmap-read|tests/vm/mmap-close|tests/vm/mmap-overlap|tests/vm/mmap-twice|tests/vm/mmap-write|tests/vm/mmap-exit|tests/vm/mmap-shuffle|tests/vm/mmap-clean|tests/vm/mmap-inherit|tests/vm/mmap-misalign|tests/vm/mmap-null|tests/vm/mmap-over-code|tests/vm/mmap-over-data|tests/vm/mmap-over-stk|tests/vm/mmap-remove)

View File

@@ -63,7 +63,9 @@ userprog_SRC += userprog/tss.c # TSS management.
# Virtual memory code.
vm_SRC += vm/frame.c # Frame table manager.
vm_SRC += vm/page.c # Page table manager.
vm_SRC += devices/swap.c # Swap block manager.
vm_SRC += vm/stackgrowth.c # Stack growth functions.
#vm_SRC = vm/file.c # Some other file.
# Filesystem code.

View File

@@ -15,6 +15,7 @@
#include "threads/switch.h"
#include "threads/synch.h"
#include "threads/vaddr.h"
#include "vm/page.h"
#ifdef USERPROG
#include "userprog/process.h"
#include "userprog/syscall.h"
@@ -262,9 +263,14 @@ thread_create (const char *name, int priority,
/* Initialize the thread's file descriptor table. */
t->fd_counter = MINIMUM_USER_FD;
if (!hash_init (&t->open_files, fd_hash, fd_less, NULL)
|| !hash_init (&t->child_results, process_result_hash,
process_result_less, t))
bool success = hash_init (&t->open_files, fd_hash, fd_less, NULL);
success = success && hash_init (&t->child_results, process_result_hash,
process_result_less, t);
#ifdef VM
success = success && hash_init (&t->pages, page_hash, page_less, NULL);
#endif
if (!success)
{
palloc_free_page (t);
free (t->result);

View File

@@ -143,6 +143,12 @@ struct thread
struct hash open_files; /* Hash Table of FD -> Struct File. */
#endif
#ifdef VM
struct hash pages; /* Table of open user pages. */
#endif
void *curr_esp;
/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */
};

View File

@@ -1,15 +1,25 @@
#include "userprog/exception.h"
#include <inttypes.h>
#include <stdio.h>
#include "stdbool.h"
#include "userprog/gdt.h"
#include "threads/interrupt.h"
#include "threads/thread.h"
#ifdef VM
#include "vm/stackgrowth.h"
#include "vm/frame.h"
#include "vm/page.h"
#include "devices/swap.h"
#include "threads/vaddr.h"
#include "userprog/pagedir.h"
#endif
/* Number of page faults processed. */
static long long page_fault_cnt;
static void kill (struct intr_frame *);
static void page_fault (struct intr_frame *);
bool try_fetch_page (void *upage, bool write);
/* Registers handlers for interrupts that can be caused by user
programs.
@@ -145,6 +155,49 @@ page_fault (struct intr_frame *f)
write = (f->error_code & PF_W) != 0;
user = (f->error_code & PF_U) != 0;
#ifdef VM
void *upage = pg_round_down (fault_addr);
if (not_present && is_user_vaddr(upage))
{
struct thread *t = thread_current ();
void *esp = user ? f->esp : t->curr_esp;
/* Check if the non-present user page is in the swap partition.
If so, swap it back into main memory, updating the PTE for
the faulted virtual address to point to the newly allocated
frame. */
if (page_in_swap (t, fault_addr))
{
size_t swap_slot = page_get_swap (t, fault_addr);
void *kpage = frame_alloc (0, upage, t);
swap_in (kpage, swap_slot);
bool writeable = pagedir_is_writable (t->pagedir, upage);
if (pagedir_set_page (t->pagedir, upage, kpage, writeable)) return;
}
/* Handle user page faults that need to be resolved by dynamic
stack growth by checking if this is such a fault and responding
accordingly. */
if (handle_stack_fault (fault_addr, esp)) return;
/* Handle user page faults that need to be resolved by lazy loading
of executable files by checking if they contain entries in the
SPT hash map and responding accordingly. */
if (try_fetch_page (upage, write))
return;
}
/* Allows for page faults within a kernel context to communicate with
user pages for sending error codes. */
if (!user)
{
f->eip = (void *)f->eax;
f->eax = 0xffffffff;
return;
}
#endif
/* To implement virtual memory, delete the rest of the function
body, and replace it with code that brings in the page to
which fault_addr refers. */
@@ -156,3 +209,35 @@ page_fault (struct intr_frame *f)
kill (f);
}
#ifdef VM
bool
try_fetch_page (void *upage, bool write)
{
/* Check if the page is in the supplemental page table. That is, it is a page
that is expected to be in memory. */
struct page_entry *page = page_get (upage);
if (page == NULL)
return false;
/* An attempt to write to a non-writeable should fail. */
if (write && !page->writable)
return false;
/* Load the page into memory based on the type of data it is expecting. */
bool success = false;
switch (page->type) {
case PAGE_EXECUTABLE:
success = page_load (page, page->writable);
break;
default:
return false;
}
if (success && page->writable &&
!pagedir_is_writable(thread_current()->pagedir, upage))
pagedir_set_writable(thread_current()->pagedir, upage, true);
return success;
}
#endif

View File

@@ -1,6 +1,8 @@
#ifndef USERPROG_EXCEPTION_H
#define USERPROG_EXCEPTION_H
#include <stdbool.h>
/* Page fault error code bits that describe the cause of the exception. */
#define PF_P 0x1 /* 0: not-present page. 1: access rights violation. */
#define PF_W 0x2 /* 0: read, 1: write. */
@@ -8,5 +10,7 @@
void exception_init (void);
void exception_print_stats (void);
bool
try_fetch_page (void *upage, bool write);
#endif /* userprog/exception.h */

View File

@@ -7,7 +7,6 @@
#include "threads/palloc.h"
static uint32_t *active_pd (void);
static void invalidate_pagedir (uint32_t *);
/* Creates a new page directory that has mappings for kernel
virtual addresses, but none for user virtual addresses.
@@ -53,7 +52,7 @@ pagedir_destroy (uint32_t *pd)
on CREATE. If CREATE is true, then a new page table is
created and a pointer into it is returned. Otherwise, a null
pointer is returned. */
static uint32_t *
uint32_t *
lookup_page (uint32_t *pd, const void *vaddr, bool create)
{
uint32_t *pt, *pde;
@@ -278,7 +277,7 @@ active_pd (void)
This function invalidates the TLB if PD is the active page
directory. (If PD is not active then its entries are not in
the TLB, so there is no need to invalidate anything.) */
static void
void
invalidate_pagedir (uint32_t *pd)
{
if (active_pd () == pd)

View File

@@ -6,6 +6,7 @@
uint32_t *pagedir_create (void);
void pagedir_destroy (uint32_t *pd);
uint32_t *lookup_page (uint32_t *pd, const void *vaddr, bool create);
bool pagedir_set_page (uint32_t *pd, void *upage, void *kpage, bool rw);
void *pagedir_get_page (uint32_t *pd, const void *upage);
void pagedir_clear_page (uint32_t *pd, void *upage);
@@ -16,5 +17,6 @@ void pagedir_set_accessed (uint32_t *pd, const void *upage, bool accessed);
bool pagedir_is_writable (uint32_t *pd, const void *upage);
void pagedir_set_writable (uint32_t *pd, const void *upage, bool writable);
void pagedir_activate (uint32_t *pd);
void invalidate_pagedir (uint32_t *pd);
#endif /* userprog/pagedir.h */

View File

@@ -24,6 +24,7 @@
#include "threads/vaddr.h"
#include "threads/synch.h"
#include "devices/timer.h"
#include "vm/page.h"
#ifdef VM
#include "vm/frame.h"
#endif
@@ -116,9 +117,9 @@ process_execute (const char *cmd)
return tid;
}
static void *get_usr_kpage (enum palloc_flags flags);
static void *get_usr_kpage (enum palloc_flags flags, void *upage);
static void free_usr_kpage (void *kpage);
static bool install_page (void *upage, void *kpage, bool writable);
bool install_page (void *upage, void *kpage, bool writable);
static bool process_init_stack (char *cmd_saveptr, void **esp, char *file_name);
static void *push_to_stack (void **esp, void *data, size_t data_size);
@@ -257,12 +258,13 @@ process_init_stack (char *cmd_saveptr, void **esp, char *file_name)
int pages_needed = DIV_CEIL (overflow_bytes, PGSIZE);
/* Allocate the pages and map them to the user process. */
void *upage;
uint8_t *kpage;
for (int i = 1; i < pages_needed + 1; i++)
{
uint8_t *kpage = get_usr_kpage (PAL_ZERO);
if (!install_page (((uint8_t *) PHYS_BASE) - PGSIZE * (i + 1),
kpage, true))
return false;
upage = ((uint8_t *) PHYS_BASE) - PGSIZE * (i + 1);
kpage = get_usr_kpage (PAL_ZERO, upage);
if (!install_page (upage, kpage, true)) return false;
}
}
@@ -363,6 +365,9 @@ process_exit (void)
/* Clean up all open files */
hash_destroy (&cur->open_files, fd_cleanup);
#ifdef VM
hash_destroy (&cur->pages, page_cleanup);
#endif
/* Close the executable file, implicitly allowing it to be written to. */
if (cur->exec_file != NULL)
@@ -620,7 +625,9 @@ load (const char *file_name, void (**eip) (void), void **esp)
done:
/* We arrive here whether the load is successful or not. */
#ifndef VM
file_close (file);
#endif
lock_release (&filesys_lock);
return success;
}
@@ -688,12 +695,34 @@ validate_segment (const struct Elf32_Phdr *phdr, struct file *file)
or disk read error occurs. */
static bool
load_segment (struct file *file, off_t ofs, uint8_t *upage,
uint32_t read_bytes, uint32_t zero_bytes, bool writable)
uint32_t read_bytes, uint32_t zero_bytes, bool writable)
{
ASSERT ((read_bytes + zero_bytes) % PGSIZE == 0);
ASSERT (pg_ofs (upage) == 0);
ASSERT (ofs % PGSIZE == 0);
#ifdef VM
while (read_bytes > 0 || zero_bytes > 0)
{
/* Calculate how to fill this page.
We will read PAGE_READ_BYTES bytes from FILE
and zero the final PAGE_ZERO_BYTES bytes. */
size_t page_read_bytes = read_bytes < PGSIZE ? read_bytes : PGSIZE;
size_t page_zero_bytes = PGSIZE - page_read_bytes;
/* Add the page metadata to the SPT to be lazy loaded later on */
if (page_insert (file, ofs, upage, page_read_bytes, page_zero_bytes,
writable, PAGE_EXECUTABLE) == NULL)
return false;
/* Advance. */
read_bytes -= page_read_bytes;
zero_bytes -= page_zero_bytes;
ofs += PGSIZE;
upage += PGSIZE;
}
return true;
#else
file_seek (file, ofs);
while (read_bytes > 0 || zero_bytes > 0)
{
@@ -710,7 +739,7 @@ load_segment (struct file *file, off_t ofs, uint8_t *upage,
if (kpage == NULL){
/* Get a new page of memory. */
kpage = get_usr_kpage (0);
kpage = get_usr_kpage (0, upage);
if (kpage == NULL){
return false;
}
@@ -743,6 +772,7 @@ load_segment (struct file *file, off_t ofs, uint8_t *upage,
upage += PGSIZE;
}
return true;
#endif
}
/* Create a minimal stack by mapping a zeroed page at the top of
@@ -752,11 +782,13 @@ setup_stack (void **esp)
{
uint8_t *kpage;
bool success = false;
kpage = get_usr_kpage (PAL_ZERO);
void *upage = ((uint8_t *) PHYS_BASE) - PGSIZE;
kpage = get_usr_kpage (PAL_ZERO, upage);
if (kpage != NULL)
{
success = install_page (((uint8_t *) PHYS_BASE) - PGSIZE, kpage, true);
success = install_page (upage, kpage, true);
if (success)
*esp = PHYS_BASE;
else
@@ -765,14 +797,21 @@ setup_stack (void **esp)
return success;
}
/* Claims a page from the user pool and returns its kernel address,
updating the frame table if VM is enabled. */
/* Claims a page from the user pool for ownership by the current thread
and returns its kernel address, updating the frame table if VM
is enabled. Requires the intended virtual address for where the page
will be installed. */
static void *
get_usr_kpage (enum palloc_flags flags)
get_usr_kpage (enum palloc_flags flags, void *upage)
{
void *page;
#ifdef VM
page = frame_alloc (flags);
struct thread *t = thread_current ();
if (pagedir_get_page (t->pagedir, upage) != NULL)
return NULL;
else
page = frame_alloc (flags, upage, t);
pagedir_set_accessed (t->pagedir, upage, true);
#else
page = palloc_get_page (flags | PAL_USER);
#endif
@@ -800,7 +839,7 @@ free_usr_kpage (void *kpage)
with palloc_get_page().
Returns true on success, false if UPAGE is already mapped or
if memory allocation fails. */
static bool
bool
install_page (void *upage, void *kpage, bool writable)
{
struct thread *t = thread_current ();

View File

@@ -8,4 +8,6 @@ int process_wait (tid_t);
void process_exit (void);
void process_activate (void);
bool install_page (void *upage, void *kpage, bool writable);
#endif /* userprog/process.h */

View File

@@ -11,6 +11,7 @@
#include "userprog/process.h"
#include "userprog/pagedir.h"
#include <stdio.h>
#include <stdbool.h>
#include <syscall-nr.h>
#define MAX_SYSCALL_ARGS 3
@@ -46,8 +47,11 @@ static unsigned syscall_tell (int fd);
static void syscall_close (int fd);
static struct open_file *fd_get_file (int fd);
static void validate_user_pointer (const void *start, size_t size);
static void validate_user_string (const char *str);
static void validate_user_pointer (const void *ptr, size_t size,
bool check_write);
static void validate_user_string (const char *str, bool check_write);
static int get_user (const uint8_t *);
static bool put_user (uint8_t *, uint8_t);
/* A struct defining a syscall_function pointer along with its arity. */
struct syscall_arguments
@@ -96,8 +100,9 @@ static void
syscall_handler (struct intr_frame *f)
{
/* First, read the system call number from the stack. */
validate_user_pointer (f->esp, sizeof (uintptr_t));
uintptr_t syscall_number = *(int *) f->esp;
validate_user_pointer (f->esp, sizeof (uintptr_t), false);
uintptr_t syscall_number = *(int *)f->esp;
thread_current ()->curr_esp = f->esp;
/* Ensures the number corresponds to a system call that can be handled. */
if (syscall_number >= LOOKUP_SIZE)
@@ -107,11 +112,10 @@ syscall_handler (struct intr_frame *f)
/* Next, read and copy the arguments from the stack pointer. */
validate_user_pointer (f->esp + sizeof (uintptr_t),
syscall.arity * sizeof (uintptr_t));
uintptr_t args[MAX_SYSCALL_ARGS] = {0};
syscall.arity * sizeof (uintptr_t), false);
uintptr_t args[MAX_SYSCALL_ARGS] = { 0 };
for (int i = 0; i < syscall.arity && i < MAX_SYSCALL_ARGS; i++)
args[i] = *(uintptr_t *) (f->esp + sizeof (uintptr_t) * (i + 1));
args[i] = *(uintptr_t *)(f->esp + sizeof (uintptr_t) * (i + 1));
/* Call the function that handles this system call with the arguments. When
there is a return value it is stored in f->eax. */
@@ -140,8 +144,7 @@ syscall_exit (int status)
static pid_t
syscall_exec (const char *cmd_line)
{
/* Validate the user string before executing the process. */
validate_user_string (cmd_line);
validate_user_string (cmd_line, false);
return process_execute (cmd_line); /* Returns the PID of the new process */
}
@@ -160,8 +163,7 @@ syscall_wait (pid_t pid)
static bool
syscall_create (const char *file, unsigned initial_size)
{
/* Validate the user string before creating the file. */
validate_user_string (file);
validate_user_string (file, false);
/* Acquire the file system lock to prevent race conditions. */
lock_acquire (&filesys_lock);
@@ -178,8 +180,7 @@ syscall_create (const char *file, unsigned initial_size)
static bool
syscall_remove (const char *file)
{
/* Validate the user string before removing the file. */
validate_user_string (file);
validate_user_string (file, false);
/* Acquire the file system lock to prevent race conditions. */
lock_acquire (&filesys_lock);
@@ -197,8 +198,7 @@ syscall_remove (const char *file)
static int
syscall_open (const char *file)
{
/* Validate the user string before opening the file. */
validate_user_string (file);
validate_user_string (file, false);
/* Acquire the file system lock to prevent race conditions. */
lock_acquire (&filesys_lock);
@@ -264,8 +264,7 @@ syscall_read (int fd, void *buffer, unsigned size)
if (fd < STDIN_FILENO || fd == STDOUT_FILENO)
return EXIT_FAILURE;
/* Validate the user buffer for the provided size before reading. */
validate_user_pointer (buffer, size);
validate_user_pointer (buffer, size, true);
if (fd == STDIN_FILENO)
{
@@ -308,8 +307,7 @@ syscall_write (int fd, const void *buffer, unsigned size)
if (fd <= 0)
return 0;
/* Validate the user buffer for the provided size before writing. */
validate_user_pointer (buffer, size);
validate_user_pointer (buffer, size, false);
if (fd == STDOUT_FILENO)
{
@@ -451,63 +449,91 @@ fd_get_file (int fd)
return hash_entry (e, struct open_file, elem);
}
/* Validates if a block of memory starting at START and of size SIZE bytes is
fully contained within user virtual memory. Kills the thread (by exiting with
failure) if the memory is invalid. Otherwise, returns (nothing) normally.
If the size is 0, the function does no checks and returns the given ptr. */
/* Validates if a block of memory starting at PTR and of size SIZE bytes is
fully contained within valid user virtual memory. thread_exit () if the
memory is invalid.
If the size is 0, the function does no checks and returns PTR. */
static void
validate_user_pointer (const void *start, size_t size)
validate_user_pointer (const void *ptr, size_t size, bool check_write)
{
/* If the size is 0, we do not need to check anything. */
if (size == 0)
return;
const void *end = start + size - 1;
/* Check if the start and end pointers are valid user virtual addresses. */
if (start == NULL || !is_user_vaddr (start) || !is_user_vaddr (end))
/* ptr < ptr + size - 1, so sufficient to check that (ptr + size -1) is a
valid user virtual memory address. */
void *last = ptr + size - 1;
if (!is_user_vaddr (last))
syscall_exit (EXIT_FAILURE);
/* We now need to check if the entire memory block is mapped to physical
memory by the page table. */
for (const void *ptr = pg_round_down (start); ptr <= end; ptr += PGSIZE)
if (pagedir_get_page (thread_current ()->pagedir, ptr) == NULL)
syscall_exit (EXIT_FAILURE);
ptr = pg_round_down (ptr);
while (ptr <= last)
{
int result;
/* Check read access to pointer. */
if ((result = get_user (ptr)) == -1)
syscall_exit (EXIT_FAILURE);
/* Check write access to pointer (if required). */
if (check_write && !put_user (ptr, result))
syscall_exit (EXIT_FAILURE);
ptr += PGSIZE;
}
}
/* Validates if a string is fully contained within user virtual memory. Kills
the thread (by exiting with failure) if the memory is invalid. Otherwise,
returns (nothing) normally. */
/* Validates of a C-string starting at ptr is fully contained within valid
user virtual memory. thread_exit () if the memory is invalid. */
static void
validate_user_string (const char *str)
validate_user_string (const char *ptr, bool check_write)
{
/* Check if the string pointer is a valid user virtual address. */
if (str == NULL || !is_user_vaddr (str))
syscall_exit (EXIT_FAILURE);
size_t offset = (uintptr_t) ptr % PGSIZE;
/* Calculate the offset of the string within the (first) page. */
size_t offset = (uintptr_t) str % PGSIZE;
/* We move page by page, checking if the page is mapped to physical memory. */
for (;;)
{
void *page = pg_round_down (str);
{
void *page = pg_round_down (ptr);
/* If we reach addresses that are not mapped to physical memory before the
end of the string, the thread is terminated. */
if (!is_user_vaddr(page) ||
pagedir_get_page (thread_current ()->pagedir, page) == NULL)
syscall_exit (EXIT_FAILURE);
if (!is_user_vaddr (page))
syscall_exit (EXIT_FAILURE);
if (!is_user_vaddr (ptr))
syscall_exit (EXIT_FAILURE);
int result;
if ((result = get_user ((const uint8_t *)ptr)) == -1)
syscall_exit (EXIT_FAILURE);
if (check_write && !put_user ((uint8_t *)ptr, result))
syscall_exit (EXIT_FAILURE);
while (offset < PGSIZE)
while (offset < PGSIZE)
{
if (*str == '\0')
if (*ptr == '\0')
return; /* We reached the end of the string without issues. */
str++;
ptr++;
offset++;
}
offset = 0; /* Next page will start at the beginning. */
}
offset = 0;
}
}
/* PROVIDED BY SPEC.
Reads a byte at user virtual address UADDR.
UADDR must be below PHYS_BASE.
Returns the byte value if successful, -1 if a segfault occurred. */
static int
get_user (const uint8_t *uaddr)
{
int result;
asm ("movl $1f, %0; movzbl %1, %0; 1:" : "=&a"(result) : "m"(*uaddr));
return result;
}
/* PROVIDED BY SPEC.
Writes BYTE to user address UDST.
UDST must be below PHYS_BASE.
Returns true if successful, false if a segfault occurred. */
static bool
put_user (uint8_t *udst, uint8_t byte)
{
int error_code;
asm ("movl $1f, %0; movb %b2, %1; 1:"
: "=&a"(error_code), "=m"(*udst)
: "q"(byte));
return error_code != -1;
}

View File

@@ -1,34 +1,42 @@
#include <debug.h>
#include <hash.h>
#include <list.h>
#include <string.h>
#include "frame.h"
#include "page.h"
#include "threads/malloc.h"
#include "threads/vaddr.h"
#include "userprog/pagedir.h"
#include "threads/synch.h"
#include "devices/swap.h"
/* Hash table that maps every active frame's kernel virtual address
to its corresponding 'frame_metadata'.*/
struct hash frame_table;
/* Linked list of frame_metadata whose pages are predicted to currently
be in the working set of a process. They are not considered for
eviction, but are considered for demotion to the 'inactive' list. */
struct list active_list;
/* Linked list used to represent the circular queue in the 'clock'
algorithm for page eviction. Iterating from the element that is
currently pointed at by 'next_victim' yields an ordering of the entries
from oldest to newest (in terms of when they were added or checked
for having been referenced by a process). */
struct list lru_list;
/* Linked list of frame_metadata whose pages are predicted to leave the
working set of their processes soon, so are considered for eviction.
Pages are considered for eviction from the tail end, and are initially
demoted to 'inactive' at the head. */
struct list inactive_list;
/* The next element in lru_list to be considered for eviction (oldest added
or referenced page in the circular queue). If this page has has an
'accessed' bit of 0 when considering eviction, then it will be the next
victim. Otherwise, the next element in the queue is similarly considered. */
struct list_elem *next_victim = NULL;
/* Synchronisation variables. */
/* Ensures mutual exclusion to accessing the 'head' and first element of
'inactive_list', which is accessed every time a frame is allocated. */
struct lock inactive_head_lock;
/* Protects access to 'lru_list'. */
struct lock lru_lock;
struct frame_metadata
{
void *frame; /* The kernel virtual address holding the frame. */
void *upage; /* The user virtual address pointing to the frame. */
struct thread *owner; /* Pointer to the thread that owns the frame. */
struct hash_elem hash_elem; /* Tracks the position of the frame metadata
within 'frame_table', whose key is the
kernel virtual address of the frame. */
@@ -40,56 +48,109 @@ struct frame_metadata
hash_hash_func frame_metadata_hash;
hash_less_func frame_metadata_less;
static struct list_elem *lru_next (struct list_elem *e);
static struct list_elem *lru_prev (struct list_elem *e);
static struct frame_metadata *get_victim (void);
/* Initialize the frame system by initializing the frame (hash) table with
the frame_metadata hashing and comparison functions, as well as initializing
the active & inactive lists. Also initializes the system's synchronisation
primitives. */
'lru_list' and its associated synchronisation primitives. */
void
frame_init (void)
{
hash_init (&frame_table, frame_metadata_hash, frame_metadata_less, NULL);
list_init (&active_list);
list_init (&inactive_list);
lock_init (&inactive_head_lock);
list_init (&lru_list);
lock_init (&lru_lock);
}
/* TODO: Consider synchronisation more closely (i.e. just for hash
table). */
/* Attempt to allocate a frame for a user process, either by direct
allocation of a user page if there is sufficient RAM, or by
evicting a currently active page if memory allocated for user
processes is fulled and storing it in swap. If swap is full in
the former case, panic the kernel. */
void *
frame_alloc (enum palloc_flags flags)
frame_alloc (enum palloc_flags flags, void *upage, struct thread *owner)
{
struct frame_metadata *frame_metadata;
flags |= PAL_USER;
lock_acquire (&lru_lock);
void *frame = palloc_get_page (flags);
/* If a frame couldn't be allocated we must be out of main memory. Thus,
obtain a victim page to replace with our page, and swap the victim
into disk. */
if (frame == NULL)
{
/* TODO: Find victim page to replace, and swap it with this new page. */
return NULL;
/* 1. Obtain victim. */
if (next_victim == NULL)
PANIC ("Couldn't allocate a single page to main memory!\n");
struct frame_metadata *victim = get_victim ();
ASSERT (victim != NULL); /* get_victim () should never return null. */
/* 2. Swap out victim into disk. */
/* Mark page as 'not present' and flag the page directory as having
been modified *before* eviction begins to prevent the owner of the
victim page from accessing/modifying it mid-eviction. */
pagedir_clear_page (victim->owner->pagedir, victim->upage);
// TODO: Lock PTE of victim page for victim process.
size_t swap_slot = swap_out (victim->frame);
page_set_swap (victim->owner, victim->upage, swap_slot);
/* If zero flag is set, zero out the victim page. */
if (flags & PAL_ZERO)
memset (victim->frame, 0, PGSIZE);
/* 3. Indicate that the new frame's metadata will be stored
inside the same structure that stored the victim's metadata.
As both the new frame and the victim frame share the same kernel
virtual address, the hash map need not be updated, and neither
the list_elem value as both share the same lru_list position. */
frame_metadata = victim;
}
struct frame_metadata *frame_metadata =
malloc (sizeof (struct frame_metadata));
frame_metadata->frame = frame;
/* If sufficient main memory allows the frame to be directly allocated,
we must update the frame table with a new entry, and grow lru_list. */
else
{
/* Must own lru_lock here, as otherwise there is a race condition
with next_victim either being NULL or uninitialized. */
frame_metadata = malloc (sizeof (struct frame_metadata));
frame_metadata->frame = frame;
/* Newly faulted pages begin at the head of the inactive list. */
lock_acquire (&inactive_head_lock);
list_push_front (&inactive_list, &frame_metadata->list_elem);
lock_release (&inactive_head_lock);
/* Newly allocated frames are pushed to the back of the circular queue
represented by lru_list. Must explicitly handle the case where the
circular queue is empty (when next_victim == NULL). */
if (next_victim == NULL)
{
list_push_back (&lru_list, &frame_metadata->list_elem);
next_victim = &frame_metadata->list_elem;
}
else
{
struct list_elem *lru_tail = lru_prev (next_victim);
list_insert (lru_tail, &frame_metadata->list_elem);
}
/* Finally, insert frame metadata within the frame table, with the key as its
allocated kernel address. */
hash_replace (&frame_table, &frame_metadata->hash_elem);
hash_insert (&frame_table, &frame_metadata->hash_elem);
}
return frame;
frame_metadata->upage = upage;
frame_metadata->owner = owner;
lock_release (&lru_lock);
return frame_metadata->frame;
}
/* Attempt to deallocate a frame for a user process by removing it from the
frame table as well as active/inactive list, and freeing the underlying
page memory. Panics if the frame isn't active in memory. */
frame table as well as lru_list, and freeing the underlying page
memory & metadata struct. Panics if the frame isn't active in memory. */
void
frame_free (void *frame)
{
@@ -98,17 +159,58 @@ frame_free (void *frame)
struct hash_elem *e =
hash_delete (&frame_table, &key_metadata.hash_elem);
if (e == NULL) PANIC ("Attempted to free a frame without a corresponding "
"kernel address!\n");
if (e == NULL) PANIC ("Attempted to free a frame at kernel address %p, "
"but this address is not allocated!\n", frame);
struct frame_metadata *frame_metadata =
hash_entry (e, struct frame_metadata, hash_elem);
lock_acquire (&lru_lock);
list_remove (&frame_metadata->list_elem);
/* If we're freeing the frame marked as the next victim, update
next_victim to either be the next least recently used page, or NULL
if no pages are loaded in main memory. */
if (&frame_metadata->list_elem == next_victim)
{
if (list_empty (&lru_list))
next_victim = NULL;
else
next_victim = lru_next (next_victim);
}
lock_release (&lru_lock);
free (frame_metadata);
palloc_free_page (frame);
}
/* TODO: Account for page aliases when checking accessed bit. */
/* A pre-condition for calling this function is that the calling thread
owns lru_lock and that lru_list is non-empty. */
static struct frame_metadata *
get_victim (void)
{
struct list_elem *e = next_victim;
struct frame_metadata *frame_metadata;
uint32_t *pd;
void *upage;
for (;;)
{
frame_metadata = list_entry (e, struct frame_metadata, list_elem);
pd = frame_metadata->owner->pagedir;
upage = frame_metadata->upage;
e = lru_next (e);
if (!pagedir_is_accessed (pd, upage))
break;
pagedir_set_accessed (pd, upage, false);
}
next_victim = e;
return frame_metadata;
}
/* Hash function for frame metadata, used for storing entries in the
frame table. */
unsigned
@@ -135,3 +237,26 @@ frame_metadata_less (const struct hash_elem *a_, const struct hash_elem *b_,
return a->frame < b->frame;
}
/* Returns the next recently used element after the one provided, which
is achieved by iterating through lru_list like a circular queue
(wrapping around the list at the tail). */
static struct list_elem *
lru_next (struct list_elem *e)
{
if (!list_empty (&lru_list) && e == list_back (&lru_list))
return list_front (&lru_list);
return list_next (e);
}
/* Returns the previous recently used element after the one provided, which
is achieved by iterating through lru_list like a circular queue
(wrapping around the list at the head). */
static struct list_elem *
lru_prev (struct list_elem *e)
{
if (!list_empty (&lru_list) && e == list_front (&lru_list))
return list_back (&lru_list);
return list_prev (e);
}

View File

@@ -1,10 +1,11 @@
#ifndef VM_FRAME_H
#define VM_FRAME_H
#include "threads/thread.h"
#include "threads/palloc.h"
void frame_init (void);
void *frame_alloc (enum palloc_flags);
void *frame_alloc (enum palloc_flags, void *, struct thread *);
void frame_free (void *frame);
#endif /* vm/frame.h */

158
src/vm/page.c Normal file
View File

@@ -0,0 +1,158 @@
#include "page.h"
#include <string.h>
#include <stdio.h>
#include "filesys/file.h"
#include "threads/pte.h"
#include "threads/malloc.h"
#include "threads/palloc.h"
#include "userprog/process.h"
#include "userprog/pagedir.h"
#include "vm/frame.h"
#define SWAP_FLAG_BIT 9
#define ADDR_START_BIT 12
/* Hashing function needed for the SPT table. Returns a hash for an entry,
based on its upage. */
unsigned
page_hash (const struct hash_elem *e, UNUSED void *aux)
{
struct page_entry *page = hash_entry (e, struct page_entry, elem);
return hash_ptr (page->upage);
}
/* Comparator function for the SPT table. Compares two entries based on their
upages. */
bool
page_less (const struct hash_elem *a_, const struct hash_elem *b_,
void *aux UNUSED)
{
const struct page_entry *a = hash_entry (a_, struct page_entry, elem);
const struct page_entry *b = hash_entry (b_, struct page_entry, elem);
return a->upage < b->upage;
}
/* Allocate and insert a new page entry into the thread's page table. */
struct page_entry *
page_insert (struct file *file, off_t ofs, void *upage, uint32_t read_bytes,
uint32_t zero_bytes, bool writable, enum page_type type)
{
struct page_entry *page = malloc(sizeof (struct page_entry));
if (page == NULL)
return NULL;
page->file = file;
page->offset = ofs;
page->upage = upage;
page->read_bytes = read_bytes;
page->zero_bytes = zero_bytes;
page->writable = writable;
page->type = type;
hash_insert (&thread_current ()->pages, &page->elem);
return page;
}
/* Gets a page_entry from the starting address of the page. Returns NULL if no
such page_entry exists in the hash map.*/
struct page_entry *
page_get (void *upage)
{
struct page_entry fake_page_entry;
fake_page_entry.upage = upage;
struct hash_elem *e
= hash_find (&thread_current ()->pages, &fake_page_entry.elem);
if (e == NULL)
return NULL;
return hash_entry (e, struct page_entry, elem);
}
bool
page_load (struct page_entry *page, bool writable)
{
/* Allocate a frame for the page. If a frame allocation fails, then
frame_alloc should try to evict a page. If it is still NULL, the OS
panics as this should not happen if eviction is working correctly. */
struct thread *t = thread_current ();
void *frame = frame_alloc (0, page->upage, t);
pagedir_set_accessed (t->pagedir, page->upage, true);
if (frame == NULL)
PANIC ("Could not allocate a frame to load page into memory.");
/* Map the page to the frame. */
if (!install_page (page->upage, frame, writable))
{
frame_free (frame);
return false;
}
/* Move the file pointer to the correct location in the file. Then, read the
data from the file into the frame. Checks that we were able to read the
expected number of bytes. */
file_seek (page->file, page->offset);
if (file_read (page->file, frame, page->read_bytes) != (int) page->read_bytes)
{
frame_free (frame);
return false;
}
/* Zero out the remaining bytes in the frame. */
memset (frame + page->read_bytes, 0, page->zero_bytes);
/* Mark the page as loaded successfully. */
return true;
}
/* Function to clean up a page_entry. Given the elem of that page_entry, frees
the page_entry itself. */
void
page_cleanup (struct hash_elem *e, void *aux UNUSED)
{
free (hash_entry (e, struct page_entry, elem));
}
/* Updates the 'owner' thread's page table entry for virtual address 'upage'
to flag the page as being stored in swap, and stores the specified swap slot
value in the entry at the address bits for later retrieval from disk. */
void
page_set_swap (struct thread *owner, void *upage, size_t swap_slot)
{
uint32_t *pte = lookup_page (owner->pagedir, upage, false);
/* Store the provided swap slot in the address bits of the page table
entry, truncating excess bits. */
*pte |= (1 << SWAP_FLAG_BIT);
uint32_t swap_slot_bits = (swap_slot << ADDR_START_BIT) & PTE_ADDR;
*pte = (*pte & PTE_FLAGS) | swap_slot_bits;
invalidate_pagedir (owner->pagedir);
}
/* Returns true iff the page with user address 'upage' owned by 'owner'
is flagged to be in the swap disk via the owner's page table. */
bool
page_in_swap (struct thread *owner, void *upage)
{
uint32_t *pte = lookup_page (owner->pagedir, upage, false);
return pte != NULL &&
(*pte & (1 << SWAP_FLAG_BIT)) != 0;
}
/* Given that the page with user address 'upage' owned by 'owner' is flagged
to be in the swap disk via the owner's page table, returns its stored
swap slot. Otherwise panics the kernel. */
size_t
page_get_swap (struct thread *owner, void *upage)
{
uint32_t *pte = lookup_page (owner->pagedir, upage, false);
ASSERT (pte != NULL);
ASSERT ((*pte & PTE_P) == 0);
/* Masks the address bits and returns truncated value. */
return ((*pte & PTE_ADDR) >> ADDR_START_BIT);
}

39
src/vm/page.h Normal file
View File

@@ -0,0 +1,39 @@
#ifndef VM_PAGE_H
#define VM_PAGE_H
#include "threads/thread.h"
#include "filesys/off_t.h"
enum page_type {
PAGE_EXECUTABLE,
PAGE_EMPTY
};
struct page_entry {
enum page_type type; /* Type of Data that should go into the page */
void *upage; /* Start Address of the User Page (Key of hash table). */
/* File Data */
struct file *file; /* Pointer to the file for executables. */
off_t offset; /* Offset of the page content within the file. */
uint32_t read_bytes; /* Number of bytes to read within the page. */
uint32_t zero_bytes; /* Number of bytes to zero within the page. */
bool writable; /* Flag for whether this page is writable or not. */
struct hash_elem elem; /* An elem for the hash table. */
};
unsigned page_hash (const struct hash_elem *e, void *aux);
bool page_less (const struct hash_elem *a_, const struct hash_elem *b_,
void *aux);
struct page_entry *page_insert (struct file *file, off_t ofs, void *upage,
uint32_t read_bytes, uint32_t zero_bytes,
bool writable, enum page_type type);
struct page_entry *page_get (void *upage);
bool page_load (struct page_entry *page, bool writable);
void page_cleanup (struct hash_elem *e, void *aux);
void page_set_swap (struct thread *, void *, size_t);
bool page_in_swap (struct thread *, void *);
size_t page_get_swap (struct thread *, void *);
#endif /* vm/frame.h */

59
src/vm/stackgrowth.c Normal file
View File

@@ -0,0 +1,59 @@
#include <stdio.h>
#include "stackgrowth.h"
#include "frame.h"
#include "threads/palloc.h"
#include "threads/thread.h"
#include "threads/vaddr.h"
#include "userprog/pagedir.h"
#define MAX_STACK_ACCESS_DIST 32
static bool is_stack_fault (const void *addr, const void *esp);
static bool grow_stack (const void *addr);
/* Determine whether a particular page fault occured due to a stack
access below the stack pointer that should induce stack growth, and
if so grow the stack by a single page (capped at MAX_STACK_SIZE). */
bool
handle_stack_fault (const void *ptr, const void *esp)
{
return is_stack_fault (ptr, esp) && grow_stack (ptr);
}
/* Determines whether a particular page fault appears to be caused by
a stack access that should induce dynamic stack growth. Stack size
is capped at MAX_STACK_SIZE. */
static bool
is_stack_fault (const void *addr, const void *esp)
{
return ((uint32_t*)addr >= ((uint32_t*)esp - MAX_STACK_ACCESS_DIST) &&
((PHYS_BASE - pg_round_down (addr)) <= MAX_STACK_SIZE));
}
/* Grows the stack of the process running inside the current thread by a single
page given a user virtual address inside of the page wherein the new section
of the stack should be allocated. */
static bool
grow_stack (const void *addr)
{
struct thread *t = thread_current ();
void *last_page = pg_round_down (addr);
/* This function should only be called when dealing with a faulting stack
access that induces stack growth, so the provided address shouldn't be
present in a page within the current thread's page directory. */
ASSERT (pagedir_get_page (t->pagedir, last_page) == NULL);
uint8_t *new_page = frame_alloc (PAL_ZERO, last_page, t);
if (new_page == NULL)
return false;
if (!pagedir_set_page (t->pagedir, last_page, new_page, true))
{
frame_free (new_page);
return false;
}
return true;
}

10
src/vm/stackgrowth.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef VM_GROWSTACK_H
#define VM_GROWSTACK_H
#include <stdio.h>
#define MAX_STACK_SIZE 8388608 // (8MB)
bool handle_stack_fault (const void *ptr, const void *esp);
#endif /* vm/frame.h */