{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib widget\n", "from collections.abc import Iterable\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from scipy.stats import chi2\n", "import math\n", "from fractions import Fraction as F" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Main\n", "This contains automations for A-level Further Maths ordered in the same way as they are on [integral maths](https://my.integralmaths.org/)." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def std_deviation(variance):\n", " return math.sqrt(variance)\n", "\n", "def NOT(p):\n", " return 1 - p\n", "\n", "# Independent events\n", "def AND(*ps):\n", " return math.prod(ps)\n", "\n", "def OR(*ps):\n", " return 1 - AND(map(NOT, ps))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Permutations and Combinations\n", "These just use the `math.perm` and `math.comb` functions throughout, which are defined as follows.\n", "\n", "- Permutations (pick) are ordered\n", "- Combinations (choose) are unordered" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def permutations(n: int, take: int) -> int:\n", " return int(math.factorial(n) / math.factorial(n - take))\n", "\n", "def combinations(n: int, take: int) -> int:\n", " return int(permutations(n, take) / math.factorial(take))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Discrete Random Variables (DRVs)\n", "\n", "This section includes basic stats operations on DRVs.\n", "\n", "Note:\n", "- Expected value (expectation) = mean\n", "- Standard deviation = sqrt(variance)\n", "- $E(aX + b) = aE(X) + b$\n", "- $Var(aX + b) = a^2 Var(X)$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "class DiscreteRandomVariable:\n", " values: list[F]\n", " probabilities: list[F]\n", " size: int\n", "\n", " # items are in the form of (value, probability)\n", " # assumed that sum(probabilities) = 1\n", " def __init__(self, items: list[tuple[F, F]]):\n", " self.values = []\n", " self.probabilities = []\n", " for item in items:\n", " self.values.append(item[0])\n", " self.probabilities.append(item[1])\n", " self.size = len(items)\n", "\n", " def copy(self):\n", " c = DiscreteRandomVariable([])\n", " c.values = self.values.copy()\n", " c.probabilities = self.probabilities.copy()\n", " c.size = self.size\n", " return c\n", "\n", " def expectation(self):\n", " return sum(map(math.prod, zip(self.values, self.probabilities)))\n", "\n", " def variance(self):\n", " X2 = self.copy()\n", " X2.values = map(lambda x : x**2, X2.values)\n", " return X2.expectation() - self.expectation()**2\n", "\n", " def variance_alt(self):\n", " u = self.expectation()\n", "\n", " X_u = self.copy()\n", " X_u.values = map(lambda x : (x - u) ** 2, X_u.values)\n", "\n", " return X_u.expectation()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Discrete Distributions\n", "### Binomial\n", "- n independent trials\n", "- all trials have a probability p of success\n", "- $ X \\sim B(n, p) $\n", "\n", "### Poisson\n", "- infinite independent trials\n", "- ... at a uniform mean rate\n", "- these are defined by their mean (or expected value), λ\n", "- mean = variance\n", "- given 2 PDs, X and Y with respective means x and y, X + Y has mean x + y. assumes independent X and Y\n", "- $ X \\sim P(λ) $\n", "\n", "### Geometric\n", "- trials until success\n", "- all trials have a probability p of success\n", "- $ X \\sim Geo(p) $\n", "\n", "### Discrete Uniform\n", "- Specific case of a DRV" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "class BinomialDistribution:\n", " n: int\n", " p: F\n", " \n", " def __init__(self, n: int, p: F):\n", " self.n, self.p = n, p\n", "\n", " def expectation(self):\n", " return self.n * self.p\n", "\n", " def variance(self):\n", " return self.n * self.p * NOT(self.p)\n", " \n", " def P(self, x: int):\n", " return combinations(self.n, x) * self.p**x * NOT(self.p)**(self.n - x)\n", "\n", "class PoissonDistribution:\n", " u: F\n", "\n", " def __init__(self, u: F):\n", " self.u = u\n", "\n", " def expectation(self):\n", " return self.u\n", "\n", " def variance(self):\n", " return self.u\n", "\n", " def P(self, x: int):\n", " return math.e**-self.u * self.u**x / math.factorial(x)\n", "\n", "class GeometricDistribution:\n", " p: F\n", "\n", " def __init__(self, p: F):\n", " self.p = p\n", " \n", " def expectation(self):\n", " return 1 / self.p\n", "\n", " def variance(self):\n", " return (1 - self.p) / self.p**2\n", " \n", " def P(self, x: int):\n", " return self.p * NOT(self.p)**(x - 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Chi-squared Tests\n", "\n", "Chi squared stat:\n", "\n", "$ \\frac{(observed - expected)^2}{expected} $\n", "\n", "### Distribution Test\n", "Expected values are calculated by distribution.\n", "\n", "### Independence Test\n", "Expected values are calculated assuming independence using row and column totals.\n", "\n", "= $ \\frac{rowTotal \\times columnTotal}{total} $" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def chi2_stat(observed: list[int], expected: list[int]) -> int:\n", " return sum([\n", " (obs - exp)**2 / exp\n", " for obs, exp in zip(observed, expected)\n", " ])\n", "\n", "def independent_expected(observed: list[list[int]]) -> list[list[int]]:\n", " row_totals = [sum(row) for row in observed]\n", " col_totals = [sum(col) for col in zip(*observed)]\n", " total = sum(row_totals)\n", "\n", " return [\n", " [\n", " row_totals[x] * col_totals[y] / total\n", " for y in range(len(observed[0]))\n", " ]\n", " for x in range(len(observed))\n", " ]\n", "\n", "def flatten(l: list[any]) -> list[any]:\n", " return list(np.array(l).flatten())\n", "\n", "def chi2_critical_value(significance_level: float, degrees_of_freedom: int) -> float:\n", " return chi2.ppf(1 - significance_level, df=degrees_of_freedom)\n", "\n", "def degrees_of_freedom(values: list[list[int]]) -> int:\n", " return (len(values) - 1) * (len(values[0]) - 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bivariate Data\n", "\n", "### Product Moment Correlation\n", "$ r = \\frac{\\sum{(x_i - \\bar{x})(y_i - \\bar{y})}}{\\sqrt{\\sum{(x_i - \\bar{x})^2} \\times \\sum{(y_i - \\bar{y})^2}}} $\n", "- $ -1 < r < 1 $\n", "- positive $ r $: positive correlation\n", "- negative $ r $: negative correlation\n", "- $ r = 0 $: no correlation\n", "\n", "### Spearman's Rank Correlation\n", "$ r_s = 1 - \\frac{6\\sum{(x_i - y_i)^2}}{n(n^2 - 1)} $\n", "- used when:\n", " - data is given in a ranked form\n", " - data is not from a bivariate normal distribution (is not linear)\n", "- $ -1 < r_s < 1 $\n", "- positive $ r_s $: positive correlation (not necessarily linear)\n", "- negative $ r_s $: negative correlation (not necessarily linear)\n", "- $ r_s = 0 $: no correlation\n", "\n", "### Linear Regression\n", "$ y = \\bar{y} - b\\bar{x} + bx $ where $ b = \\frac{\\sum{(x_i - \\bar{x})(y_i - \\bar{y})}}{\\sum{(x_i - \\bar{x})^2}} $" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def product_moment_cc(x: list[int], y: list[int]) -> F:\n", " x_avg = F(sum(x), len(x))\n", " y_avg = F(sum(y), len(y))\n", " return sum([\n", " (x_i - x_avg) * (y_i - y_avg)\n", " for x_i, y_i in zip(x, y)\n", " ]) / math.sqrt(sum([\n", " (x_i - x_avg)**2\n", " for x_i in x\n", " ]) * sum([\n", " (y_i - y_avg)**2\n", " for y_i in y\n", " ]))\n", "\n", "def spearman_rank_cc(x: list[int], y: list[int]) -> F:\n", " n = len(x)\n", " return 1 - F(6 * sum([\n", " (x_i - y_i)**2\n", " for x_i, y_i in zip(x, y)\n", " ]), n * (n**2 - 1))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" } } }, "nbformat": 4, "nbformat_minor": 2 }