#include #include #include #include #include "frame.h" #include "page.h" #include "threads/malloc.h" #include "threads/vaddr.h" #include "userprog/pagedir.h" #include "threads/synch.h" #include "devices/swap.h" /* Hash table that maps every active frame's kernel virtual address to its corresponding 'frame_metadata'.*/ struct hash frame_table; /* Linked list used to represent the circular queue in the 'clock' algorithm for page eviction. Iterating from the element that is currently pointed at by 'next_victim' yields an ordering of the entries from oldest to newest (in terms of when they were added or checked for having been referenced by a process). */ struct list lru_list; /* The next element in lru_list to be considered for eviction (oldest added or referenced page in the circular queue). If this page has has an 'accessed' bit of 0 when considering eviction, then it will be the next victim. Otherwise, the next element in the queue is similarly considered. */ struct list_elem *next_victim = NULL; /* Synchronisation variables. */ /* Protects access to 'lru_list'. */ struct lock lru_lock; struct frame_metadata { void *frame; /* The kernel virtual address holding the frame. */ void *upage; /* The user virtual address pointing to the frame. */ struct thread *owner; /* Pointer to the thread that owns the frame. */ bool pinned; struct hash_elem hash_elem; /* Tracks the position of the frame metadata within 'frame_table', whose key is the kernel virtual address of the frame. */ struct list_elem list_elem; /* Tracks the position of the frame metadata in either the 'active' or 'inactive' list, so a victim can be chosen for eviction. */ }; hash_hash_func frame_metadata_hash; hash_less_func frame_metadata_less; static struct list_elem *lru_next (struct list_elem *e); static struct list_elem *lru_prev (struct list_elem *e); static struct frame_metadata *frame_metadata_get (void *frame); static struct frame_metadata *get_victim (void); /* Initialize the frame system by initializing the frame (hash) table with the frame_metadata hashing and comparison functions, as well as initializing 'lru_list' and its associated synchronisation primitives. */ void frame_init (void) { hash_init (&frame_table, frame_metadata_hash, frame_metadata_less, NULL); list_init (&lru_list); lock_init (&lru_lock); } /* TODO: Consider synchronisation more closely (i.e. just for hash table). */ /* Attempt to allocate a frame for a user process, either by direct allocation of a user page if there is sufficient RAM, or by evicting a currently active page if memory allocated for user processes is fulled and storing it in swap. If swap is full in the former case, panic the kernel. */ void * frame_alloc (enum palloc_flags flags, void *upage, struct thread *owner) { struct frame_metadata *frame_metadata; flags |= PAL_USER; lock_acquire (&lru_lock); void *frame = palloc_get_page (flags); /* If a frame couldn't be allocated we must be out of main memory. Thus, obtain a victim page to replace with our page, and swap the victim into disk. */ if (frame == NULL) { /* 1. Obtain victim. */ if (next_victim == NULL) PANIC ("Couldn't allocate a single page to main memory!\n"); struct frame_metadata *victim = get_victim (); ASSERT (victim != NULL); /* get_victim () should never return null. */ /* 2. Swap out victim into disk. */ /* Mark page as 'not present' and flag the page directory as having been modified *before* eviction begins to prevent the owner of the victim page from accessing/modifying it mid-eviction. */ pagedir_clear_page (victim->owner->pagedir, victim->upage); // TODO: Lock PTE of victim page for victim process. size_t swap_slot = swap_out (victim->frame); page_set_swap (victim->owner, victim->upage, swap_slot); /* If zero flag is set, zero out the victim page. */ if (flags & PAL_ZERO) memset (victim->frame, 0, PGSIZE); /* 3. Indicate that the new frame's metadata will be stored inside the same structure that stored the victim's metadata. As both the new frame and the victim frame share the same kernel virtual address, the hash map need not be updated, and neither the list_elem value as both share the same lru_list position. */ frame_metadata = victim; } /* If sufficient main memory allows the frame to be directly allocated, we must update the frame table with a new entry, and grow lru_list. */ else { /* Must own lru_lock here, as otherwise there is a race condition with next_victim either being NULL or uninitialized. */ frame_metadata = malloc (sizeof (struct frame_metadata)); frame_metadata->frame = frame; /* Newly allocated frames are pushed to the back of the circular queue represented by lru_list. Must explicitly handle the case where the circular queue is empty (when next_victim == NULL). */ if (next_victim == NULL) { list_push_back (&lru_list, &frame_metadata->list_elem); next_victim = &frame_metadata->list_elem; } else { struct list_elem *lru_tail = lru_prev (next_victim); list_insert (lru_tail, &frame_metadata->list_elem); } hash_insert (&frame_table, &frame_metadata->hash_elem); } frame_metadata->upage = upage; frame_metadata->owner = owner; frame_metadata->pinned = false; lock_release (&lru_lock); return frame_metadata->frame; } void frame_pin (void *frame) { struct frame_metadata *frame_metadata = frame_metadata_get (frame); if (frame_metadata == NULL) PANIC ("Attempted to pin a frame at an unallocated kernel address '%p'\n", frame); frame_metadata->pinned = true; } void frame_unpin (void *frame) { struct frame_metadata *frame_metadata = frame_metadata_get (frame); if (frame_metadata == NULL) PANIC ("Attempted to unpin a frame at an unallocated kernel address '%p'\n", frame); frame_metadata->pinned = false; } /* Attempt to deallocate a frame for a user process by removing it from the frame table as well as lru_list, and freeing the underlying page memory & metadata struct. Panics if the frame isn't active in memory. */ void frame_free (void *frame) { struct frame_metadata key_metadata; key_metadata.frame = frame; struct hash_elem *e = hash_delete (&frame_table, &key_metadata.hash_elem); if (e == NULL) PANIC ("Attempted to free a frame at kernel address %p, " "but this address is not allocated!\n", frame); struct frame_metadata *frame_metadata = hash_entry (e, struct frame_metadata, hash_elem); lock_acquire (&lru_lock); list_remove (&frame_metadata->list_elem); /* If we're freeing the frame marked as the next victim, update next_victim to either be the next least recently used page, or NULL if no pages are loaded in main memory. */ if (&frame_metadata->list_elem == next_victim) { if (list_empty (&lru_list)) next_victim = NULL; else next_victim = lru_next (next_victim); } lock_release (&lru_lock); free (frame_metadata); palloc_free_page (frame); } /* TODO: Account for page aliases when checking accessed bit. */ /* A pre-condition for calling this function is that the calling thread owns lru_lock and that lru_list is non-empty. */ static struct frame_metadata * get_victim (void) { struct list_elem *e = next_victim; struct frame_metadata *frame_metadata; uint32_t *pd; void *upage; for (;;) { frame_metadata = list_entry (e, struct frame_metadata, list_elem); pd = frame_metadata->owner->pagedir; upage = frame_metadata->upage; e = lru_next (e); /* Skip pinned frames */ if (frame_metadata->pinned) continue; if (!pagedir_is_accessed (pd, upage)) break; pagedir_set_accessed (pd, upage, false); } next_victim = e; return frame_metadata; } /* Hash function for frame metadata, used for storing entries in the frame table. */ unsigned frame_metadata_hash (const struct hash_elem *e, void *aux UNUSED) { struct frame_metadata *frame_metadata = hash_entry (e, struct frame_metadata, hash_elem); return hash_bytes (&frame_metadata->frame, sizeof (frame_metadata->frame)); } /* 'less_func' comparison function for frame metadata, used for comparing the keys of the frame table. Returns true iff the kernel virtual address of the first frame is less than that of the second frame. */ bool frame_metadata_less (const struct hash_elem *a_, const struct hash_elem *b_, void *aux UNUSED) { struct frame_metadata *a = hash_entry (a_, struct frame_metadata, hash_elem); struct frame_metadata *b = hash_entry (b_, struct frame_metadata, hash_elem); return a->frame < b->frame; } static struct frame_metadata * frame_metadata_get (void *frame) { struct frame_metadata key_metadata; key_metadata.frame = frame; struct hash_elem *e = hash_find (&frame_table, &key_metadata.hash_elem); if (e == NULL) return NULL; return hash_entry (e, struct frame_metadata, hash_elem); } /* Returns the next recently used element after the one provided, which is achieved by iterating through lru_list like a circular queue (wrapping around the list at the tail). */ static struct list_elem * lru_next (struct list_elem *e) { if (!list_empty (&lru_list) && e == list_back (&lru_list)) return list_front (&lru_list); return list_next (e); } /* Returns the previous recently used element after the one provided, which is achieved by iterating through lru_list like a circular queue (wrapping around the list at the head). */ static struct list_elem * lru_prev (struct list_elem *e) { if (!list_empty (&lru_list) && e == list_front (&lru_list)) return list_back (&lru_list); return list_prev (e); }